Introducing the Instruction Set Part 4

From Intellivision Wiki

Jump to: navigation, search


This short tutorial examines the shift and rotate instructions. These are useful instructions, but somewhat more specialized than the rest of the instruction set. If you haven't read Part 1, Part 2 or Part 3 yet, you might consider doing so first.

Contents

Shift and Rotate Instructions

The CP1610 offers a rich variety of shift and rotate instructions. Each can shift by one or two positions. The shift instructions only operate on R0 through R3. You cannot use them with R4 through R7.

Click on a given mnemonic to see how it operates.

  SLL   Rx[, 2]Shift Logical Left
  SLR   Rx[, 2]Shift Logical Right
  SAR   Rx[, 2]Shift Arithmetic Right
  SWAP  Rx[, 2]Swap bytes
  SLLC  Rx[, 2]SLL into Carry
  SARC  Rx[, 2]SAR into Carry
  RLC   Rx[, 2]Rotate Left thru Carry
  RRC   Rx[, 2]Rotate Right thru Carry

Shifts and rotates are useful for bit manipulation and certain types of mathematics, such as random number generation. Logical shifts (SLL, SLR, SLLC) fill the newly-opened positions with zeros. Arithmetic shifts (SAR, SARC) fill the newly opened positions with copies of bit 15. Logical right shifts can be thought of as "unsigned divide by 2", whereas arithmetic right shifts can be thought of as "signed divide by 2, rounding toward negative."

Shifts can also align numbers with fields packed in a word, or help extract a field in a packed word. For example, the STIC display words in the BACKTAB store the card # to display in bits 2 - 10. To extract a card number, you need to shift right by 3. To insert a card number into a display word, you need to shift left by 3.

Rotates are like shifts, except that they fill the vacated bits with bits from a status register. By itself, this property has no particular mathematical meaning. When rotates combine with shifts, though, they can perform extended-precision operations.

Shift and Rotate Diagram Summary

The following diagrams illustrate the behavior of each of the 8 shift and rotate instructions. Click on the links below for more detail.

Shifts that do not
use Carry and Overflow
Shifts and rotates that
do use Carry and Overflow
Sar diagram.png
SAR
Sarc diagram.png
SARC
Slr diagram.png
SLR
Rrc diagram.png
RRC
Sll diagram.png
SLL
Sllc diagram.png
SLLC
Swap diagram.png
SWAP
Rlc diagram.png
RLC

Caveats: Non-interruptibility

Shift instructions are Non-interruptible Instructions. Be sure to include an interruptible instruction in a long sequence of shifts or other non-interruptible instructions, otherwise you could cause display glitches.

A useful rule of thumb is to insert an interruptible instruction between every 4 or so non-interruptible instructions. If you can't find an interruptible instruction to move into place, you can use a NOP instruction.

Using Shifts for Multiplication

Shifting values left multiplies them by powers of two. Each bit position shifted corresponds to another power of two. Shifting left one position multiplies by 2; shifting by two positions multiplies by 4. The following table illustrates the relationship between positions shifted and the power of two. The table stops at 8 for brevity's sake.

  Number of positions  
  shifted left  
  Power of 2  
  multiplied by  
  Example Code Sequence  
12
    SLL Rx, 1 
24
    SLL Rx, 2 
38
    SLL Rx, 1
    SLL Rx, 2 
416
    SLL Rx, 2
    SLL Rx, 2 
    
  Number of positions  
  shifted left  
  Power of 2  
  multiplied by  
  Example Code Sequence  
532
    SLL Rx, 1
    SLL Rx, 2
    SLL Rx, 2 
664
    SLL Rx, 2
    SLL Rx, 2
    SLL Rx, 2 
7128
    SLL Rx, 1
    SLL Rx, 2
    SLL Rx, 2
    SLL Rx, 2 
8256
    SWAP Rx, 1
    ANDI #$FF00, Rx



You can combine shift and add instructions to perform simple multiplications by constants that aren't powers of two. The following example shows how to multiply the value in R0 by 20, using R1 as a temporary variable.

    SLL  R0, 2   ; Multiply R0 by 4
    MOVR R0, R1  ; Save a copy of original value * 4
    SLL  R0, 2   ; Multiply R0 by 4 again (original value * 16)
    ADDR R1, R0  ; Add (value * 4) to (value * 16), giving (value * 20)

This works by recognizing that "20" is the sum of two powers of two, "4" and "16". In general, you can multiply by any constant by breaking the constant down into its constituent powers of two.

In some cases, it may be more efficient to use subtracts instead of adds. For example, consider the following example that multiplies R0 by 15, using R1 as a temporary register.

    MOVR  R0, R1  ; Save a copy of original value
    SLL   R0, 2   ; multiply R0 by 4:                     R0 = value * 4 
    SLL   R0, 2   ; multiply R0 by 4 again:               R0 = value * 16
    SUBR  R1, R0  ; Subtract original value from result:  R0 = value * 15

Using Shifts for Division by Powers of Two

Right shifts divide by powers of two, by default truncating the fractional portion. This is the same as rounding towards negative. With a minor tweak, the same code can round upwards. The following table shows example code sequences for various power-of-two divides on signed numbers and unsigned numbers.

Number of positions
shifted right
Power of 2
divided by
Example Code Sequence for
signed, rounding to negative
Example Code Sequence for
signed, rounding to positive
Example Code Sequence for
unsigned, rounding toward 0
Example Code Sequence for
unsigned, rounding to positive
12
    SAR  Rx, 1 
    INCR Rx
    SAR  Rx, 1
    SLR  Rx, 1 
    INCR Rx
    SLR  Rx, 1 
24
    SAR  Rx, 2 
    ADDI #2, Rx
    SAR  Rx, 2
    SLR  Rx, 2 
    ADDI #2, Rx
    SLR  Rx, 2 
38
    SAR  Rx, 2
    SAR  Rx, 1 
    SAR  Rx, 2
    INCR Rx
    SAR  Rx, 1
    SLR  Rx, 2
    SLR  Rx, 1 
    SLR  Rx, 2
    INCR Rx
    SLR  Rx, 1 
416
    SAR  Rx, 2
    SAR  Rx, 2 
    SAR  Rx, 2
    ADDI #2, Rx
    SAR  Rx, 2
    SLR  Rx, 2
    SLR  Rx, 2 
    SLR  Rx, 2
    ADDI #2, Rx
    SLR  Rx, 2 
532
    SAR  Rx, 2
    SAR  Rx, 2
    SAR  Rx, 1 
    SAR  Rx, 2
    SAR  Rx, 2
    INCR Rx
    SAR  Rx, 1
    SLR  Rx, 2
    SLR  Rx, 2
    SLR  Rx, 1 
    SLR  Rx, 2
    SLR  Rx, 2
    INCR Rx
    SLR  Rx, 1 
664
    SAR  Rx, 2
    SAR  Rx, 2
    SAR  Rx, 2 
    SAR  Rx, 2
    SAR  Rx, 2
    ADDI #2, Rx
    SAR  Rx, 2
    SLR  Rx, 2
    SLR  Rx, 2
    SLR  Rx, 2 
    SLR  Rx, 2
    SLR  Rx, 2
    ADDI #2, Rx
    SLR  Rx, 2 
7128
    SAR  Rx, 2
    SAR  Rx, 2
    SAR  Rx, 2
    SAR  Rx, 1 
    SAR  Rx, 2
    SAR  Rx, 2
    SAR  Rx, 2
    INCR Rx
    SAR  Rx, 1
    SLR  Rx, 2
    SLR  Rx, 2
    SLR  Rx, 2
    SLR  Rx, 1 
    SLR  Rx, 2
    SLR  Rx, 2
    SLR  Rx, 2
    INCR Rx
    SLR  Rx, 1 
8256
    SAR  Rx, 2
    SAR  Rx, 2
    SAR  Rx, 2
    SAR  Rx, 2 
    SAR  Rx, 2
    SAR  Rx, 2
    SAR  Rx, 2
    ADDI #2, Rx
    SAR  Rx, 2
    SWAP Rx
    ANDI #$00FF, Rx 
    ADDI #$80, Rx
    SWAP Rx
    ANDI #$00FF, Rx



Combining Shifts and Rotates for Extended-Precision Shifts

Rotate instructions combined with shift instructions make it easy to shift values longer than 16 bits. The following examples show how to shift the 32 bit number held in R1:R0 left and right by 1 and 2 positions. (R1 holds bits 16..31 of the 32-bit number.) Note that the diagrams omit the final results of the Carry Flag, Overflow Flag and Sign Flag for clarity and brevity. The rotate instructions do move the shifted-away bits to the C and O flags, though, allowing one to extend the shift to even wider words. See the RLC and RRC pages for more details.

32-bit Left Shift by 1

    ; Shift R1:R0 left by 1 position
    SLLC R0, 1   ; Shift lower half left, extra bit to 'C'
    RLC  R1, 1   ; Shift upper half left, pulling lower bit from 'C'

32 bit left shift 1.png



32-bit Left Shift by 2

    ; Shift R1:R0 left by 2 positions
    SLLC R0, 2   ; Shift lower half left, extra bits to 'C', 'O'
    RLC  R1, 2   ; Shift upper half left, pulling lower bit from 'C', 'O'

32 bit left shift 2.png



32-bit Right Shift by 1

    ; Shift R1:R0 right by 1 position (arithmetic right shift)
    SARC R1, 1   ; Shift upper half left, extra bit to 'C'
    RRC  R0, 1   ; Shift lower half left, pulling lower bit from 'C'

32 bit right shift 1.png



32-bit Right Shift by 2

    ; Shift R1:R0 left by 2 positions (arithmetic right shift)
    SARC R1, 2   ; Shift upper half right, extra bits to 'C', 'O'
    RRC  R0, 2   ; Shift lower half right, pulling lower bit from 'C', 'O'

32 bit right shift 2.png



Wrapping Up

At this point, you may wish to revisit the earlier parts of this tutorial:

Or, you can return to the Programming Tutorials index.

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox